Assignment 12

1. Find an approximation for the minimum of the polynomial $x^{4}+x^{2}-40 x+400$ by applying two steps of the golden-mean search starting with the interval [2, 2.5].
2. Find an approximation for the minimum of the polynomial $x^{4}+x^{2}-40 x+400$ by applying two steps of the method of successive parabolic interpolation starting with $x_{0}=1.5, x_{1}=2.5$ and $x_{2}=2.0$.
3. Find an approximation for the minimum of the function $-\sin (x)+\sin (2 x)$ by applying two steps of the golden-mean search starting with the interval [2, 2.5].
4. Find an approximation for the minimum of the function $-\sin (x)+\sin (2 x)$ by applying two steps of the method of successive parabolic interpolation starting with $x_{0}=1.5, x_{1}=2.5$ and $x_{2}=2.0$.
5. Find an approximation of the minimum of the polynomial $x^{2}+2 y^{2}-x y-8 x+5 y-1$ by applying the Hooke-Jeeves method starting with $x=y=0$ and $h=1$ and continuing until $h<0.25$.
6. Find an approximation of the minimum of the polynomial $x^{2}+2 y^{2}-x y-8 x+5 y-1$ by applying one step of Newton's method in n dimensions for finding extrema starting with $x=4$ and $y=0$.
7. Find the gradient of the polynomial $x^{2}+2 y^{2}-x y-8 x+5 y-1$ at the point $x=4$ and $y=0$ and convert this into a polynomial in a single variable. The minimum of a quadratic polynomial $a x^{2}+b x+c$ is $-b / 2 a$, so use this to determine the next point. Calculate the gradient at this second point.
8. Are the two gradient vectors in Question 6 reasonably orthogonal?
